Sample, sample size and sampling: a review of current recommendations

Keywords: sampling, sample size, sample, research, review

Abstract

Introduction: The present review is based on the need to know the current recommendations on the sample, sample size and sampling that are considered in various empirical studies, aspects that certainly can generate confusion especially in novice researchers. In this sense, a theoretical and methodological framework is established that attempts to answer different questions raised on this subject, based on publications in high impact journals, guaranteeing their credibility and suitability. Objective: Provide a guide that offers different views on sample sizes and their practical application for researchers, teachers and students. Method: Theoretical study in the form of a narrative review. Results: Current recommendations revolve around performing power analysis to calculate the sample size, regardless of the type of sampling to be used, in addition to the fact that it is a good practice to be guided by the sample sizes of other studies with similar characteristics, preferably from journals indexed in high-level databases. However, it is necessary to clarify that this work should not be taken as a definitive guide, but that it is the duty of the researcher to be informed of new updates in methodologies that may arise on this subject. Conclusions: The choice of sample size depends on multiple factors that should be carefully analyzed.

Downloads

Download data is not yet available.

References

Abt, G., Boreham, C., Davison, G., Jackson, R., Nevill, A., Wallace, E., & Williams, M. (2020). Power, precision, and sample size estimation in sport and exercise science research. Journal of Sports Sciences, 38(17), 1933-1935. https://doi.org/10.1080/02640414.2020.1776002

Adwok, J. (2015). Probability Sampling - A Guideline for Quantitative Health Care Research. The Annals of African Surgery, 12(2), 95-99. https://www.ajol.info/index.php/aas/article/view/126349

Althubaiti, A. (2022). Sample size determination: A practical guide for health researchers. Journal of General and Family Medicine, 24(2), 72-78. https://doi.org/10.1002/jgf2.600

American Psychological Association. (2018). Journal Article Reporting Standards (JARS). APA Style. https://apastyle.apa.org/jars

Andrade, C. (2020). Sample Size and its Importance in Research. Indian Journal of Psychological Medicine, 42(1), 102-103. https://doi.org/10.4103/IJPSYM.IJPSYM_504_19

Arias-Gómez, J., Villasís-Keever, M. Á., & Miranda-Novales, M. G. (2016). El protocolo de investigación III: la población de estudio. Revista Alergia México, 63(2), 201–206. https://doi.org/10.29262/ram.v63i2.181

Ato, M., López-García, J. J., & Benavente, A. (2013). Un sistema de clasificación de los diseños de investigación en psicología. Anales de Psicología, 29(3), 1038-1059. https://doi.org/10.6018/analesps.29.3.178511

Ato, M. y Vallejo, G. (2015). Diseños de investigación en Psicología. Ediciones Pirámide.

Ayhan, H. (2011). Non-probability Sampling Survey Methods. International Encyclopedia of Statistical Science, 979-982. https://doi.org/10.1007/978-3-642-04898-2_41

Barriopedro, M. I. (2015). La significación estadística no es suficiente. [Statistical significance is not enough]. RICYDE. Revista internacional de ciencias del deporte, 11(40), 101-103. https://doi.org/10.5232/ricyde2015.040ed

Brysbaert, M. (2019). How Many Participants Do We Have to Include in Properly Powered Experiments? A Tutorial of Power Analysis with Reference Tables. Journal of Cognition, 2(1), 1-38. https://doi.org/10.5334/joc.72

Cortés, M., Mur, N., Iglesias, M., & Cortés, M. (2020). Algunas consideraciones para el cálculo del tamaño muestral en investigaciones de las Ciencias Médicas. MediSur, 18(5), 937-942. http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1727-897X2020000500937&lng=es&nrm=iso&tlng=es

Ferrando, J., & Anguiano-Carrasco, C. (2010). El análisis factorial como técnica de investigación en psicología. Papeles del Psicólogo, 31(1), 18-33. https://www.redalyc.org/articulo.oa?id=77812441003

Fuentelsalz, C. (2004). Cálculo del tamaño de la muestra. Matronas Profesión, 5(18), 5-13. https://dialnet.unirioja.es/servlet/articulo?codigo=6125940

García-García, J. A., Reding-Bernal, A., & López-Alvarenga, J. C. (2013). Cálculo del tamaño de la muestra en investigación en educación médica. Investigación en Educación Médica, 2(8), 217-224. https://doi.org/10.1016/S2007-5057(13)72715-7

Goodwin, K., & Goodwin, C. (2017). Research in Psychology: Methods and Design. Wiley

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2018). Multivariate Data Analysis. (8th ed.). Cengage Learning.

Head, M. L., Holman, L., Lanfear, R., Kahn, A. T., & Jennions, M. D. (2015). The Extent and Consequences of P-Hacking in Science. PLOS Biology, 13(3), e1002106. https://doi.org/10.1371/journal.pbio.1002106

Hernández, R., & Mendoza, Ch. (2018). Metodología de la investigación: Las rutas cuantitativa, cualitativa y mixta. McGraw Hill Education

Kline, R. (2023). Principles and practice of structural equation modeling. (5th ed). Guilford Press

Krefeld-Schwalb, A., Hua, X., & Johnson, E. (2025). Measuring population heterogeneity requires heterogeneous populations. PNAS, 122(8), e2425536122. https://doi.org/10.1073/pnas.2425536122

Leenen, I. (2012). La prueba de hipótesis nula y sus alternativas: revisión de algunas críticas y su relevancia para las ciencias médicas. Investigación en Educación Médica, 1(4), 225-234. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-50572012000400010

Lloret-Segura, S., Ferreres-Traver, A., Hernández-Baeza, A., & Tomás-Marco, I. (2014). El Análisis Factorial Exploratorio de los Ítems: una guía práctica, revisada y actualizada. Anales de Psicología, 30(3), 1151-1169. https://dx.doi.org/10.6018/analesps.30.3.199361

Martínez-Ezquerro, J. D., Riojas-Garza, A., & Rendón-Macías, M. E. (2017). Significancia clínica sobre significancia estadística. Cómo interpretar los intervalos de confianza a 95%. Revista Alergia México, 64(4), 477-486. https://doi.org/10.29262/ram.v64i4.334

Martínez-Mesa, J., González-Chica, D. A., Bastos, J. L., Bonamigo, R. R., & Duquia, R. P. (2014). Sample size: how many participants do I need in my research? Anais Brasileiros de Dermatologia, 89(4), 609-615. https://doi.org/10.1590/abd1806-4841.20143705

Memon, M. A., Ting, H., Cheah, J.-H., Thurasamy, R., Chuah, F., & Cham, T. H. (2020). Sample Size for Survey Research: Review and Recommendations. Journal of Applied Structural Equation Modeling, 4(2), i-xx. https://doi.org/10.47263/JASEM.4(2)01

Merino-Soto, C., & Angulo-Ramos, M. (2020). Significancia práctica de resultados no paramétricos: aportes a «satisfacción e índice de masa corporal y su influencia en el autoconcepto físico». Revista Española de Salud Pública, 94. https://doi.org/10.4321/S1135-57272020000100029

Mooi, E., Sarstedt, M., & Mooi‐Reci, I. (2018). Market Research: The Process, Data, and Methods Using Stata. Springer.

Otzen, T., & Manterola, C. (2017). Técnicas de Muestreo sobre una Población a Estudio. International Journal of Morphology, 35(1), 227-232. https://doi.org/10.4067/S0717-95022017000100037

Padrão, E., Melo, C., Fernandes, G., & Magalhães, A. (2018). p-Hacking – A call for ethics. Pulmonology, 24(3), 207-208. https://doi.org/10.1016/j.pulmoe.2018.03.001

Pineda, S., & Sirota, M. (2018). Determining significance in the new era for p-values. Journal of pediatric gastroenterology and nutrition, 67(5), 547-548. https://doi.org/10.1097/MPG.0000000000002120

Quispe, A. M., Pinto, D. F., Huamán, M. R., Bueno, G. M., & Valle-Campos, A. (2020). Metodologías cuantitativas: Cálculo del tamaño de muestra con STATA y R. Revista Del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo, 13(1), 78–83. https://doi.org/10.35434/rcmhnaaa.2020.131.627

Schober, P., Bossers, S. M., & Schwarte, L. A. (2018). Statistical Significance Versus Clinical Importance of Observed Effect Sizes: What Do P Values and Confidence Intervals Really Represent? Anesthesia and Analgesia, 126(3), 1068-1072. https://doi.org/10.1213/ANE.0000000000002798

Stefan, A. M., & Schönbrodt, F. D. (2023). Big little lies: a compendium and simulation of p-hacking strategies. Royal Society Open Science, 10(2), 220346. https://doi.org/10.1098/rsos.220346

Stratton, S. J. (2023). Population Sampling: Probability and Non-Probability Techniques. Prehospital and Disaster Medicine, 38(2), 147-148. https://doi.org/10.1017/S1049023X23000304

Taherdoost, H. (2016). Sampling Methods in Research Methodology; How to Choose a Sampling Technique for Research. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3205035

Trafimow, D., Amrhein, V., Areshenkoff, C. N., Barrera-Causil, C. J., Beh, E. J., Bilgiç, Y. K., Bono, R., Bradley, M. T., Briggs, W. M., Cepeda-Freyre, H. A., Chaigneau, S. E., Ciocca, D. R., Correa, J. C., Cousineau, D., de Boer, M. R., Dhar, S. S., Dolgov, I., Gómez-Benito, J., Grendar, M., Grice, J. W., … Marmolejo-Ramos, F. (2018). Manipulating the Alpha Level Cannot Cure Significance Testing. Frontiers in psychology, 9, 699. https://doi.org/10.3389/fpsyg.2018.00699

White, M. (2022). Sample size in quantitative instrument validation studies: A systematic review of articles published in Scopus, 2021. Heliyon, 8(12), e12223. https://doi.org/10.1016/j.heliyon.2022.e12223

Whitehead, A. L., Julious, S. A., Cooper, C. L., & Campbell, M. J. (2016). Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Statistical Methods in Medical Research, 25(3), 1057-1073. https://doi.org/10.1177/0962280215588241

Willie, M. (2024). Population and Target Population in Research Methodology. Golden Ratio of Social Science and Education, 4(1), 75–79. https://doi.org/10.52970/grsse.v4i1.405

Published
2025-05-16
How to Cite
Gamarra-Moncayo, J., & Prada-Chapoñán, R. (2025). Sample, sample size and sampling: a review of current recommendations. Interacciones, 11, e447. https://doi.org/10.24016/2025.v11.447
Section
Review paper