Psychometric Properties of the Test of Mobile Phone Dependence Brief (TMDBrief) in Peruvian College Students

Keywords: mobile dependece, smartphone addiction, college students, psychometric properties, measurement invariance

Abstract

Background: The increasing use of smartphones has raised concerns about problematic use and its impact on mental health. Assessing smartphone addiction requires valid and reliable instruments, such as the Test of Mobile Phone Dependence Brief (TMDbrief), which has been widely used in various cultural contexts. Objective: This study aimed to evaluate the psychometric properties of the TMDbrief, including its factorial structure, internal consistency, measurement invariance across gender, and convergent validity with depression and phubbing behaviors in Peruvian university students. Method: In this cross-sectional study, a sample of 954 students completed the TMDbrief, the PHQ-9 to assess depression, and the Phubbing Scale to measure phone-related social disruptions. Confirmatory factor analysis (CFA) tested the four-factor structure, and McDonald's omega assessed internal consistency. Measurement invariance across gender was examined to ensure the instrument's applicability in both male and female students. Result: CFA confirmed the four-factor structure (χ²(48) = 320.31, CFI = .983, TLI = .977, RMSEA = .077, SRMR = .029). Internal consistency was strong, with McDonald’s ω between .80 and .85; CR ranged from .80 to .86 and AVE from .57 to .67, indicating adequate convergence. Measurement invariance across gender was confirmed, and convergent validity was supported by moderate correlations with depression and phubbing behaviors. Conclusion: The TMDbrief is a valid and reliable instrument for assessing smartphone addiction among Peruvian university students, supporting its use in research, early detection, and intervention development.

Downloads

Download data is not yet available.

References

Alhassan, A. A., Alqadhib, E. M., Taha, N. W., Alahmari, R. A., Salam, M., & Almutairi, A. F. (2018). The relationship between addiction to smartphone usage and depression among adults: a cross-sectional study. BMC Psychiatry, 18(1), 148. https://doi.org/10.1186/s12888-018-1745-4.

American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). American Psychiatric Publishing, Inc.

American Psychological Association. (2017). Ethical principles of psychologists and code of conduct (2002, amended effective June 1, 2010, and January 1, 2017). https://www.apa.org/ethics/code/

Anicama, J., Caballero, N., Talla, K., & Bruno, B. (2023). Propiedades psicométricas del Cuestionario de Salud del Paciente (PHQ-9) en universitarios de Lima. Revista De Psicología, 12(2), 99-112. https://doi.org/10.36901/psicologia.v12i2.1573.

Anshari, M., Alas, Y., Hardaker, G., Jaidin, J. H., Smith, M., & Ahad, A. D. (2016). Smartphone habit and behavior in Brunei: Personalization, gender, and generation gap. Computers in Human Behavior, 64, 719-727. https://doi.org/10.1016/j.chb.2016.07.063

Ato, M., López-García, J. J., & Benavente, A. (2013). Un sistema de clasificación de los diseños de investigación en psicología. Anales de Psicología/Annals of Psychology, 29(3), 1038–1059. https://doi.org/10.6018/analesps.29.3.178511

Arifin, W. N. (2025). Sample size calculator (Web). Retrieved from http://wnarifin.github.io

Becerra-Canales, B., Hernández-Huaripaucar, E., Becerra-Huamán, D., Laos-Anchante, C., Dávalos-Almeyda, M., Cevallos-Cardenas, M. J., & del Rio-Mendoza, J. (2023). Adicción a los teléfonos inteligentes en adolescentes tras la pandemia por la COVID‑19. Revista Cubana De Medicina Militar, 52(4), e023010141. https://revmedmilitar.sld.cu/index.php/mil/article/view/10141

Billieux, J., Maurage, P., Lopez-Fernandez, O., Kuss, D. J. & Griffiths, M. D. (2015). Can Disordered Mobile Phone Use Be Considered a Behavioral Addiction? An Update on Current Evidence and a Comprehensive Model for Future Research. Curr Addict Rep, 2, 156–162. https://doi.org/10.1007/s40429-015-0054-y

Blanca, M. J. & Bendayan, R., Muñoz-Miralles, R., Ortega-González, R., Griffiths, M. D., Chóliz, M., & Ballesta-Martínez, J. (2018). Spanish version of the Phubbing Scale: Internet addiction, Facebook intrusion, and fear of missing out as correlates. Psicothema, 30(4), 449–454. https://doi.org/10.7334/psicothema2018.153

Bueno-Brito, C., Pérez-Castro, E., & Delgado-Delgado, J. (2024). Smartphone addiction, anxiety, depression and stress in Mexican nursing students. Revista Cuidarte, 15(3), e3814. https://doi.org/10.15649/cuidarte.3814

Busch, P. A., & McCarthy, S. (2021). Antecedents and consequences of problematic smartphone use: A systematic literature review of an emerging research area. Computers in Human Behavior, 114, Article 106414. https://doi.org/10.1016/j.chb.2020.106414

Cerutti, R., Presaghi, F., Spensieri, V., Fontana, A., & Amendola, S. (2021). Adaptation and psychometric analysis of the test of Mobile phone dependence—brief version in Italian adolescents. International Journal of Environmental Research and Public Health, 18(5), 2612. https://doi.org/10.3390/ijerph18052612

Chen, B., Liu, F., Ding, S., Ying, X., Wang, L., & Wen, Y. (2017). Gender differences in factors associated with smartphone addiction: a cross-sectional study among medical college students. BMC Psychiatry, 17(1), 341. https://doi.org/10.1186/s12888-017-1503-z

Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 464–504. https://doi.org/10.1080/10705510701301834

Choliz, M. (2010). Adicción al teléfono móvil: un tema de debate. Addiction, 105(2), 373–374. https://doi.org/10.1111/j.1360-0443.2009.02854.x

Chóliz M. (2012). Mobile-phone addiction in adolescence: the test of mobile phone dependence (TMD). Progr. Health Sci, 2(1), 33–44. https://www.umb.edu.pl/photo/pliki/progress-file/phs/phs_2012_1/33-44_choliz.pdf

Chóliz, M., Pinto, L., Phansalkar, S. S., Corr, E., Mujjahid, A., Flores, C., & Barrientos, P. E. (2016). Development of a brief multicultural version of the test of mobile phone dependence (TMDbrief) questionnaire. Frontiers in Psychology, 7, 650. https://doi.org/10.3389/fpsyg.2016.00650

Chotpitayasunondh, V., & Douglas, K. M. (2016). How “phubbing” becomes the norm: The antecedents and consequences of snubbing via smartphone. Computers in Human Behavior, 63, 9–18. https://doi.org/10.1016/j.chb.2016.05.018

Correa-Rojas, J., Grimaldo-Muchotrigo, M., & Cambillo-Moyano, E. (2022). Propiedades psicométricas de la Escala de Phubbing: Modelo Bifactor e Invarianza factorial en universitarios peruanos. Health and Addictions: Salud Y Drogas, 22(2), 227–243. https://doi.org/10.21134/haaj.v22i2.691

Desouky, D. E. S., & Abu-Zaid, H. (2020). Mobile phone use pattern and addiction in relation to depression and anxiety. Eastern Mediterranean Health Journal, 26(6), 692-699. https://doi.org/10.26719/emhj.20.043

Dias, P., Gonçalves, S., Cadime, I., & Chóliz, M. (2019). Adaptação do teste de dependência do telemóvel para adolescentes e jóvens portugueses. Psicologia, Saúde & Doenças, 20(3), 569-580. https://doi.org/10.15309/19psd200302

Durao, M., Etchezahar, E., Ungaretti, J., & Calligaro, C. (2021). Propiedades psicométricas del Test de Dependencia al Teléfono Móvil (TDMB) en Argentina y sus relaciones con la impulsividad. Actualidades en Psicología, 35(130), 1-18. https://doi.org/10.15517/ap.v35i130.41963

Elhai, J. D., Dvorak, R. D., Levine, J. C., & Hall, B. J. (2017). Problematic smartphone use: A conceptual overview and systematic review of relations with anxiety and depression psychopathology. Journal of Affective Disorders, 207, 251-259. https://doi.org/10.1016/j.jad.2016.08.030

Everri, M., Messena, M., & Mancini, T. (2022). Analisi preliminare della validità della Brief Multicultural Version of the Test of Mobile Phone Dependence (TMDbrief) su un campione di adolescenti italiani. QWERTY- Open and Interdisciplinary Journal of Technology, Culture and Education, 17(1), 86-102. https://doi.org/10.30557/QW000051

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.2307/3151312

Hidalgo-Fuentes, S., Llamas-Salguero, F., Martínez-Álvarez, I. y Pineda-Zelaya, I. S. (2025). Prevalencia y factores asociados al uso problemático del smartphone en estudiantes universitarios de Honduras. Revista Española de Drogodependencias, 50(1), 114-128. https://doi.org/10.54108/10106

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118

Instituto Nacional de Estadística e Informática. (27 de junio de 2023). El 91,3% de la población de 6 y más años de edad que usa internet accedió a través de un teléfono celular. Nota de Prensa. https://m.inei.gob.pe/media/MenuRecursivo/noticias/nota-de-prensa-no-098-2023-inei.pdf

Ipsos Perú – Informe Redes Sociales 2021. (2021). Redes sociales 2021. https://www.ipsos.com/es-pe/redes-sociales-2021

Ivanova, A., Gorbaniuk, O., Błachnio, A., Przepiórka, A., et al. (2020). Mobile Phone Addiction, Phubbing, and Depression Among Men and Women: A Moderated Mediation Analysis. Psychiatric Quarterly, 91, 655–668. https://doi.org/10.1007/s11126-020-09723-8

Karadağ, E., Tosuntaş, Ş. B., Erzen, E., Duru, P., Bostan, N., Şahin, B. M., Çulha, İ., & Babadağ, B. (2015). Determinants of phubbing, which is the sum of many virtual addictions: a structural equation model. Journal of Behavioral Addictions, 4(2), 60–74. https://doi.org/10.1556/2006.4.2015.005

Kaya, F., Bostanci Daştan, N., & Durar, E. (2021). Smart phone usage, sleep quality and depression in university students. International Journal of Social Psychiatry, 67(5), 407-414. https://doi.org/10.1177/0020764020960207

Kerlinger, F. N., & Lee, H. B. (2002). Investigación del comportamiento: Métodos de investigación en ciencias sociales (4.ª ed.). McGraw-Hill Interamericana. https://padron.entretemas.com.ve/INICC2018-2/lecturas/u2/kerlinger-investigacion.pdf

Khalily, M. T., Bhatti, M. M., Ahmad, I., Saleem, T., Hallahan, B., Ali, S. A.-e-Z., Khan, A. A., & Hussain, B. (2021). Indigenously adapted cognitive–behavioral therapy for excessive smartphone use (IACBT-ESU): A randomized controlled trial. Psychology of Addictive Behaviors, 35(1), 93–101. https://doi.org/10.1037/adb0000677

Kim, K. H. (2005). The relation among fit indexes, power, and sample size in structural equation modeling. Structural Equation Modeling, 12(3), 368-390. https://doi.org/10.1207/s15328007sem1203_2

Li, K., Spitzer, R. L., & Williams, J. B. (2001). The PHQ-9: validity of a brief depression severity measure. Journal of General Internal Medicine, 16(9), 606-613. https://doi.org/10.1046/j.1525-1497.2001.016009606.x

Li, Y., Li, G., Liu, L., & Wu, H. (2020). Correlations between mobile phone addiction and anxiety, depression, impulsivity, and poor sleep quality among college students: A systematic review and meta-analysis. Journal of Behavioral Addictions, 9(3), 551-571. https://doi.org/10.1556/2006.2020.00057

Liu, S., Xiao, T., Yang, L., & Loprinzi, P. D. (2019). Exercise as an Alternative Approach for Treating Smartphone Addiction: A Systematic Review and Meta-Analysis of Random Controlled Trials. International Journal of Environmental Research and Public Health, 16(20), 3912. https://doi.org/10.3390/ijerph16203912

Liu, X. X. (2021). A systematic review of prevention and intervention strategies for smartphone addiction in students: Applicability during the COVID-19 pandemic. Journal of Evidence-Based Psychotherapies, 21(2), 3-36. https://doi.org/10.24193/jebp.2021.2.9

Liu, H., Soh, K. G., Samsudin, S., Rattanakoses, W., & Qi, F. (2022). Effects of exercise and psychological interventions on smartphone addiction among university students: a systematic review. Frontiers In Psychology, 13, 1021285. https://doi.org/10.3389/fpsyg.2022.1021285

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power Analysis and Determination of Sample Size for Covariance Structure Modeling. Psychological Methods, 1(2), 130-49. https://doi.org/10.1037/1082-989X.1.2.130

Martínez, N., Vidal, M., Ureña, P., & Rosado, F. (2025). Prevalencia de adicción a teléfonos inteligentes en estudiantes de medicina. Ciencia Y Salud, 9(2), 19–28. https://doi.org/10.22206/cysa.2025.v9i2.3113

McDonald, R. P. (1999). Test theory: A unified treatment. Lawrence Erlbaum Associates Publishers.

Pendergast, L. L., Von der Embse, N., Kilgus, S. P., & Eklund, K. R. (2017). Measurement equivalence: A non-technical primer on categorical multi-group confirmatory factor analysis in school psychology. Journal of School Psychology, 60, 65-82. https://doi.org/10.1016/j.jsp.2016.11.002

Pirwani, N., & Szabo, A. (2024). Could physical activity alleviate smartphone addiction in university students? A systematic literature review. Preventive Medicine Reports, 36, 102744. https://doi.org/10.1016/j.pmedr.2024.102744

Purington, A., Taft, J. G., Sannon, S., Bazarova, N. N., & Taylor, S. H. (2021). Alexa is my new BFF: Social roles, user satisfaction, and personification of the Amazon Echo. Journal of Human-Computer Interaction, 1853-2859. https://doi.org/10.1145/3027063.3053246

R Core Team. (2021). R: A Language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

Rosseel, Y. (2012). Iavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1–36. https://doi.org/10.18637/JSS.V048.I02

Rupert, M., & Hawi, N. (2016). Relationships among smartphone addiction, stress, academic performance, and satisfaction with life. Computers in Human Behavior, 57, 321-325. https://doi.org/10.1016/j.chb.2015.12.045

Sijtsma, K. (2009). On the Use, the Misuse, and the Very Limited Usefulness of Cronbach’s Alpha. Psychometrika, 74(1), 107–120. https://doi.org/10.1007/s11336-008-9101-0

Sohn, S. Y., Rees, P., Wildridge, B., Kalk, N. J., & Carter, B. (2019). Prevalence of problematic smartphone usage and associated mental health outcomes amongst children and young people: A systematic review, meta-analysis and GRADE of the evidence. BMC Psychiatry, 19(1), 1-10. https://doi.org/10.1186/s12888-019-2350-x

Svetina, D., Rutkowski, L., & Rutkowski, D. (2020). Multiple-group invariance with categorical outcomes using updated guidelines. Structural Equation Modeling, 27(1), 111–130. https://doi.org/10.1080/10705511.2019.1602776

Višnjić, A., Veličković, V., Sokolović, D., Stanković, M., Mijatović, K., Stojanović, M., Milošević, Z., & Radulović, O. (2018). Relationship between the Manner of Mobile Phone Use and Depression. International Journal of Environmental Research and Public Health, 15(4), 697. https://doi.org/10.3390/ijerph15040697

Wei, X. Y., Liang, H. Y., Gao, T., Gao, L. F., Zhang, G. H., Chu, X. Y., & Lei, L. (2024). Preference for Smartphone-Based Internet Applications. Social Science Computer Review, 42(5), 1266-1281. https://doi.org/10.1177/08944393231222680

Wu, H., & Estabrook, R. (2016). Identification of confirmatory factor analysis models. Psychometrika, 81(4), 1014–1045. https://doi.org/10.1007/s11336-016-9506-0

Wu, Y. Y., & Chou, W. H. (2023). A bibliometric analysis. International Journal of Environmental Research and Public Health, 20(5), 3840. https://doi.org/10.3390/ijerph20053840

Published
2025-07-26
How to Cite
Franco-Jimenez, A., Garcia-Rivera, M. Y., & Campos-Rosas, R. M. (2025). Psychometric Properties of the Test of Mobile Phone Dependence Brief (TMDBrief) in Peruvian College Students. Interacciones, 11, e460. https://doi.org/10.24016/2025.v11.460
Section
Original paper